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Once again on the supersonic flow separation
near a corner
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(Received 7 July 2000 and in revised form 20 April 2001)

Laminar boundary-layer separation in the supersonic flow past a corner point on
a rigid body contour, also termed the compression ramp, is considered based on
the viscous–inviscid interaction concept. The ‘triple-deck model’ is used to describe
the interaction process. The governing equations of the interaction may be formally
derived from the Navier–Stokes equations if the ramp angle θ is represented as θ =
θ0Re

−1/4, where θ0 is an order-one quantity and Re is the Reynolds number, assumed
large. To solve the interaction problem two numerical methods have been used. The
first method employs a finite-difference approximation of the governing equations
with respect to both the streamwise and wall-normal coordinates. The resulting
algebraic equations are linearized using a Newton–Raphson strategy and then solved
with the Thomas-matrix technique. The second method uses finite differences in
the streamwise direction in combination with Chebychev collocation in the normal
direction and Newton–Raphson linearization.

Our main concern is with the flow behaviour at large values of θ0. The calculations
show that as the ramp angle θ0 increases, additional eddies form near the corner
point inside the separation region. The behaviour of the solution does not give any
indication that there exists a critical value θ∗0 of the ramp angle θ0, as suggested
by Smith & Khorrami (1991) who claimed that as θ0 approaches θ∗0, a singularity
develops near the reattachment point, preventing the continuation of the solution
beyond θ∗0. Instead we find that the numerical solution agrees with Neiland’s (1970)
theory of reattachment, which does not involve any restriction upon the ramp angle.

1. Introduction
Modern theory of fluid flow separation from a rigid body surface relies, to a

significant extent, upon asymptotic analysis of the Navier–Stokes equations at large
values of the Reynolds number. Most fruitful in this respect is the method of matched
asymptotic expansions. The basic idea of this method belongs to Prandtl, who first
used it in his classical study (Prandtl 1904) of fluid flows with small viscosity. In
this paper Prandtl was particularly concerned with separation phenomenon and
the mathematical means to describe the boundary layer developing along the body
surface.

In accordance with Prandtl’s theory, a high Reynolds number flow past a rigid body
has to be subdivided into two characteristic regions. The main part of the flow may
be treated as inviscid. However, for all Reynolds numbers, no matter how large, there
always exists a thin region near the wall where the flow is predominantly viscous.
Prandtl termed this region the boundary layer, and suggested that it is because of the
specific behaviour of this layer that flow separation takes place. Flow development in
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the boundary layer depends on the pressure distribution along the wall. If the pressure
gradient is favourable, so that the pressure decreases downstream, then the boundary
layer remains well-attached to the wall. However with an adverse pressure gradient,
when the pressure starts to rise in the direction of the flow, the boundary layer tends
to separate from the body surface. The reason for separation was explained by Prandtl
in the following way. Since the velocity in the boundary layer drops towards the wall,
the kinetic energy of fluid particles inside the boundary layer appears to be less than
that at the outer edge of the boundary layer. In fact the closer a fluid particle is to the
wall the smaller appears to be its kinetic energy. This means that whilst the pressure
rise in the outer flow may be quite significant, the fluid particles inside the boundary
layer may not be able to overcome it. Even a small increase of pressure may cause
the fluid particles near the wall to stop and then turn back to form a recirculating
flow region characteristic of separated flows.

It might seem surprising that the clear understanding of the physical processes
leading to separation could not be converted into a rational mathematical theory for
more than half a century. The fact is that the classical boundary-layer theory, which
was intended by Prandtl for predicting flow separation, was based on the so-called
hierarchical approach where the outer inviscid flow is calculated first ignoring the
existence of the boundary layer, and only after that can one turn to the boundary
layer analysis. By the late forties it became obvious that such a strategy leads to
a mathematical contradiction associated with the so-called Goldstein singularity at
the point of separation. The form of this singularity was first described by Landau
& Lifshitz (1944) who demonstrated that the shear stress on the body surface
upstream of separation drops as the square root

√
s of the distance s from the

separation, and the velocity component normal to the surface tends to infinity, being
inversely proportional to

√
s. This result was later confirmed based on more rigorous

mathematical analysis by Goldstein (1948). Goldstein also proved – and this result
appeared to be of paramount importance for further development of the boundary-
layer separation theory – that the singularity at separation precludes the possibility of
continuing the solution beyond the separation point into the region of reverse flow.

Although boundary-layer theory in its classical form was found to be insufficient for
describing the separation phenomenon, Prandtl’s insight into the physical processes
leading to separation and, even more so, the mathematical approach suggested by
Prandtl for analysing high Reynolds number flows, laid a foundation for all subsequent
studies in the asymptotic theory of separation. In a broader sense, Prandtl’s idea of
subdividing the entire flow field into a number of regions with distinctively different
flow properties proved to be the beginning of one of the most powerful tools in
modern asymptotic analysis, the method of matched asymptotic expansions.

Significant progress in the theoretical description of separated flows has been
achieved in the last thirty years, and a comprehensive description of the underlying
ideas and main results of the theory may be found in the monograph by Sychev et al.
(1998). A key element of the separation process, which was not fully appreciated in
Prandtl’s (1904) classical description, is a mutual interaction between the boundary
layer and the external inviscid flow. Because of this interaction, a sharp pressure rise
may develop ‘spontaneously’ at a location on the body surface where in accordance
with Prandtl’s theory the boundary layer would be well-attached. This pressure rise
leads to a rapid deceleration of fluid particles near the wall and formation of the
reverse flow downstream of the separation. The interaction precludes development of
the Goldstein singularity.

The asymptotic theory of viscous–inviscid interaction, known now as the triple-
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deck theory, was formulated simultaneously by Neiland (1969) and Stewartson &
Williams (1969) for the self-induced separation in supersonic flow and by Stewartson
(1969) and Messiter (1970) for incompressible fluid flow near a trailing edge of a flat
plate. Later it became clear that the triple-deck interaction region, while being small,
plays a key role in many fluid flows. It governs, for instance, upstream influence
in the supersonic boundary layer, development of different modes of instabilities,
bifurcation of the solution and possible hysteresis in separated flows. As far as
separation phenomena are concerned, the theory has been extended to describe
boundary-layer separation from a smooth body surface in incompressible fluid flow,
supersonic flow separation provoked by a shock wave impinging upon the boundary
layer, incipient and large-scale separations at angular points of the body contour both
in subsonic and supersonic flows, separation at the trailing edge of a thin aerofoil
appearing as a result of increase of the angle of attack or the aerofoil thickness,
leading-edge separation, separation of the boundary layer in hypersonic flow on a hot
or cold wall, separation provoked by a wall roughness, etc.; see Sychev et al. (1998)
and references therein.

However, summarizing the results of a century long effort in this field, we have to
admit that despite the significance of the progress made, many aspects of the theory of
separated flows remain unresolved. Most notably, the theory remains predominantly
restricted to incipient or small-scale separations where the entire recirculating region
together with the separation and reattachment points ‘fits’ into the O(Re−3/8) region of
interaction. Even in the studies specifically aimed at describing developed separations
(see Neiland 1969; Stewartson & Williams 1969; Sychev 1972; Ruban 1974), the
analysis is confined to the ‘local’ flow behaviour near the separation point. Meanwhile,
the ‘global’ structure of the flow in the recirculating region remains unresolved.

Analysis of fluid flows with developed separation regions is a long-standing fun-
damental problem of classical and modern fluid dynamics. It has been the focus of
attention of many scientists starting with Helmholtz (1868) and Kirchhoff (1869) who
demonstrated that Euler’s equations of inviscid fluid motion admit solutions in the
class of discontinuous functions which could be used for modelling separated flows.
Their approach was later extended and a variety of alternative models of separated
flows have been put forward, including those by Squire (1934), Imai (1953, 1957),
Batchelor 1956a, b, Roshko (1967), Sychev (1967), Taganov (1970), Sadovskii (1971,
1973), Smith (1985), Peregrine (1985) and Chernyshenko (1985, 1988). A critical re-
view of these efforts is given in Chapter 6 of Sychev et al. (1998), leading to the
conclusion that all the models suggested so far involve inherent contradictions, ex-
cept Taganov’s (1970) model which is believed to be self-consistent. It was carefully
studied by Sadovskii (1973), and then by Chernyshenko (1988) who demonstrated
that this model represents the limiting form of the solution of the Navier–Stokes
equations as Re → ∞, representing separated flow past a bluff body. However, even
this model is open to criticism. It assumes that as Re → ∞ the separation zone
becomes infinitely large, whereas on its scale the body becomes infinitely small and
shrinks to the front stagnation point of the eddy zone. As a consequence it predicts
unrealistically low body drag that is independent of the shape of the body. More im-
portantly, Taganov–Chernyshenko’s theory cannot be extended to the moderate-scale
separations observed, for instance, in the supersonic flow past the compression ramp
with θ = O(1).

To make progress in understanding moderate-scale separation, one can approach
the problem from another angle. Considering as an example the compression ramp
flow, one can start with the triple-deck description which may be used under the



176 G. L. Korolev, J. S. B. Gajjar and A. I. Ruban

A O

B

õ

Figure 1. The flow layout. A small separation region is expected to be observed near the corner
point O, being accompanied by the formation of compression waves in the inviscid flow outside the
boundary layer.

assumption that θ = Re−1/4θ0. Then on increasing θ0 the growth of the separation
region near the angular point flow may be observed. The appropriate triple-deck
formulation for this flow was given by Stewartson (1970) and Neiland (1971b), and
early numerical solutions of the triple-deck equations for this flow were produced
by Ruban (1978) and Rizzetta et al. (1978). Their calculations revealed that as θ0

becomes large and the size of the separation region increases, the solution near the
separation point takes the form characteristic of the separation with a semi-infinite
eddy region. Downstream of the separation the ‘plateau’ zone for pressure is formed.
The pressure then rises sharply at reattachment while the skin friction becomes large
and negative immediately upstream of the reattachment point.

Later this problem was studied by Smith & Khorrami (1991). Based on the
numerical study of the flow they concluded that a singularity develops in the solution
at a finite value θ∗0 of the scaled ramp angle θ0. This singularity manifested itself
as unlimited increase of the minimal skin friction prior to reattachment as θ0 → θ∗0,
suggesting the breakdown of the solution. If this were to happen, one could argue
that the solution would not exist beyond θ∗0 which could explain why the theory of
moderate-scale separation could not be constructed. However, our calculations do not
confirm this result. We will show that while the minimal skin friction does grow very
fast for large values of θ0, the solution is found to be in agreement with Neiland’s
(1970) theory of reattachment, which does not involve any restriction upon the ramp
angle.

2. Formulation of the problem
Let us consider two-dimensional flow past a compression ramp constructed of two

flat plates AO and OB, as shown in figure 1. We shall assume that AO is aligned with
the oncoming flow, and OB makes an angle θ with AO. Let us denote the velocity,
density, viscosity and pressure in the unperturbed free stream by U∞, ρ∞, µ∞ and p∞
respectively; the distance from the leading edge A to the corner point O is L.

The Mach number in the free stream is given by

M∞ =
U∞
a∞

, a∞ =

√
γ
p∞
ρ∞
,

where a∞ is the speed of sound and γ is the specific heats ratio. We shall assume that
the oncoming flow is supersonic, i.e. M∞ is an order-one quantity greater than unity.
We shall further assume that the compression ramp angle

θ = Re−1/4θ0,
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Figure 2. Three-tiered structure of the interaction region.

where θ0 is an order-one quantity, and the Reynolds number

Re =
ρ∞U∞L
µ∞

is large.
These are precisely the conditions for the occurrence of incipient separation near

the corner point. The separation eddy, at least initially, is entirely embedded in the
region of interaction between the boundary layer and inviscid part of the flow, which
forms around point O. A detailed study of the interaction process for the corner flow
was done by Stewartson (1970) and Neiland (1971b). Based on the asymptotic analysis
of the Navier–Stokes equations they demonstrated that the region of interaction is
O(Re−3/8) and has a three-tiered structure (see figure 2), being composed of the viscous
near-wall sublayer (region 1 in figure 2), the main part of the boundary layer (region
2) and an inviscid potential flow region 3 situated outside the boundary layer.

The characteristic thickness of the viscous sublayer is estimated as being an
O(Re−5/8) quantity, so that it occupies an O(Re−1/8) portion of the boundary layer
and is composed of the stream filaments immediately adjacent to the wall. The flow
velocity in this region is O(Re−1/8) relative to the free-stream velocity, and due to
the slow motion of gas here the flow exhibits high sensitivity to pressure variations.
Even a small pressure rise along the wall may cause significant deceleration of fluid
particles there. This leads to thickening of flow filaments, and the streamlines change
their shape, being displaced from the wall.

The main part of the boundary layer, the middle tier of the interactive structure,
represents a continuation of the conventional boundary layer developing along AO
into the interaction region. Its thickness is estimated as O(Re−1/2) and the velocity is
an order-one quantity. The flow in this tier is significantly less sensitive to the pressure
variations. It does not produce any noticeable contribution to the displacement effect
of the boundary layer, which means that all the streamlines in the middle tier are
parallel to each other and carry the deformation produced by the displacement effect
of the viscous sublayer.

Finally, the upper tier is situated in the potential flow region outside the boundary
layer. It serves to ‘convert’ the perturbations in the form of the streamlines into
perturbations of pressure. These are then transmitted through the main part of the
boundary layer back to the sublayer.

For separation to take place a certain level of perturbation is necessary. It is
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reached when the scaled ramp angle θ0 = Re1/4θ assumes a critical value. Note that
the pressure perturbations in the interaction region are O(Re−1/4). However, due to the
slow motion of fluid in the viscous sublayer, a pressure rise of this level is sufficient to
cause the fluid particles near the wall become stationary at a certain location on the
body surface and then change the direction of their motion, resulting in the formation
of a reverse flow region characteristic of separated flows.

To describe the flow in the interaction region we shall start with the viscous sublayer,
region 1 in figure 2. Let x̂ and ŷ be dimensional coordinates along and normal to
the plate AO measured from the corner point O, û and v̂ be the corresponding
velocity components and p̂ the pressure. The asymptotic solution of the Navier–
Stokes equations in region 1 is written in the form (see Stewartson 1970; Neiland
1971b)

x̂ = LRe−3/8µ
−1/4
0 ρ

−1/2
0

λ5/4β3/4
x, ŷ = LRe−5/8µ

1/4
0 ρ

−1/2
0

λ3/4β1/4
(y + f(x)),

û = U∞Re−1/8µ
1/4
0 ρ

−1/2
0

λ−1/4β1/4
u, v̂ = U∞Re−3/8 µ

3/4
0 ρ

−1/2
0

λ−3/4β−1/4

(
v + u

df

dx

)
,

p̂ = p∞ + ρ∞U2∞Re−1/4µ
1/2
0 ρ

−1/2
0

λ−1/2β1/2
p.


(2.1)

Here µ0, ρ0 and λ are suitably non-dimensionalized viscosity, density and skin friction
on the wall directly ahead of the triple-deck region, the constant β being defined as
β =

√
M2∞ − 1.

Note that the transformations (2.1) serve a threefold purpose. First, they involve
the usual rescaling of variables characteristic of the method of matched asymptotic
expansions. Second, they include affine transformations which allow us to express the
interaction problem in similarity form involving only one controlling parameter

α =
θ0

µ
1/2
0 λ1/2β1/2

.

Third, the formulae (2.1) also include Prandtl’s transposition, which effectively intro-
duces a new curvilinear coordinate system with x measured along the body contour
and y in the normal direction.

The body contour is defined in these variables by the function f(x) which for the
compression ramp is written as

f(x) = αxH(x), H(x) =

{
0 if x < 0,
1 if x > 0.

(2.2)

Substitution of (2.1) into the Navier–Stokes equations results in the incompressible
form of the Prandtl boundary-layer equations

u
∂u

∂x
+ v

∂u

∂y
= −dp

dx
+
∂2u

∂y2
, (2.3)

∂u

∂x
+
∂v

∂y
= 0. (2.4)

They have to be solved with the no-slip condition on the ramp surface

u = v = 0 at y = 0, (2.5)
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and the matching conditions with the solutions in the boundary layer upstream of
the interaction region

u = y at x = −∞ (2.6)

and in the middle tier (region 2)

u→ y + A(x) + · · · as y →∞. (2.7)

Function A(x) in (2.7) determines the shape of the streamlines in the main part of
the boundary layer, and for this reason is termed the displacement function. Using
(2.7) in (2.4) it may be easily deduced that at the outer edge of the viscous sublayer
v/u = −dA/dx. As the deformation of the streamlines, produced by the viscous
sublayer, remains unchanged across the middle tier (region 2), we can conclude that
at the ‘bottom’ of the upper tier (region 3) the slope of the streamlines is given by
ϑ = −dA/dx + df/dx. Here, in addition to the displacement effect of the boundary
layer the contribution of the body shape is taken into account.

In order to determine the response of the inviscid flow outside the boundary layer
to the displacement effect of the boundary layer one has to analyse the Navier–Stokes
equations in region 3. This analysis is aimed at deriving the so-called ‘interaction law’
which relates the induced pressure p to the displacement function A. In the case of
supersonic flow it is given by Ackeret’s formula

p = −dA

dx
+

df

dx
. (2.8)

Unlike in Prandtl’s classical formulation which presumes that the pressure acting
upon the boundary layer is known in advance, the viscous–inviscid interaction allows
for the upstream influence through the boundary layer even in well-attached flows,
see Lighthill (1953). This means that an additional boundary condition specifying the
state of the flow downstream of the interaction region is required. We shall assume
that

p = α at x = ∞. (2.9)

This condition closes the formulation of the interaction problem (2.3)–(2.9) and makes
its solution unique.

3. Description of numerical methods
In this section we describe two different numerical approaches used to calculate

the solution to (2.3)–(2.9).

3.1. Method A

In this method a formulation in terms of the vorticity

ω =
∂u

∂y
(3.1)

is adopted. Differentiating (2.3) with respect to y and using (2.4) we arrive at the
following equation for ω:

u
∂ω

∂x
+ v

∂ω

∂y
=
∂2ω

∂y2
. (3.2)
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Two boundary conditions for this equation

ω = 1 at x = −∞ (3.3)

and

ω = 1 at y = ∞ (3.4)

immediately follow from (2.6) and (2.7). The third one may be deduced by setting
y = 0 in the momentum equation (2.3) and using the no-slip condition (2.5). This
yields

∂ω

∂y
=

dp

dx
at y = 0. (3.5)

With known ω the longitudinal velocity component u may be determined by
integrating (3.1) with the first of conditions (2.5) used as an initial condition. We have

u =

∫ y

0

ω dy1. (3.6)

Substituting (3.6) into (2.4) and solving for v gives (here the second of conditions (2.5)
is used)

v =

∫ y

0

y1

∂ω

∂x
dy1 − y

∫ y

0

∂ω

∂x
dy1. (3.7)

Formulae (3.6) and (3.7) allow us to eliminate u and v from (3.2), yielding(∫ y

0

ω dy1

)
∂ω

∂x
+

(∫ y

0

y1

∂ω

∂x
dy1 − y

∫ y

0

∂ω

∂x
dy1

)
∂ω

∂y
=
∂2ω

∂y2
. (3.8)

It remains to express the interaction law (2.8) in terms of ω. Substituting (3.6) into
(2.7) and differentiating the resulting equation with respect to x we find that the
interaction law may be written as

p = −
∫ ∞

0

∂ω

∂x
dy +

df

dx
. (3.9)

For large enough values of α the solution is expected to have a form in which fast
variation of the sought functions near the separation point, and even more so near the
reattachment point, are accompanied by rather slow variation in the extended eddy
region between them. To properly accommodate this type of behaviour we shall use
a new deformed longitudinal variable s given by the equation x = x(s) with rescaling
coefficient

q =
ds

dx
,

which is to be adjusted based on the results of the calculation.
Introducing the new variable into (3.5), (3.8) and (3.9) we can finally write the

interaction problem (3.3)–(3.5), (3.8) and (3.9) in a form convenient for calculations.
The problem consists in solving the equation

u
∂ω

∂s
+ ṽ

∂ω

∂y
=

1

q

∂2ω

∂y2
, (3.10)

where

u =

∫ y

0

ω dy1, ṽ =

∫ y

0

y1

∂ω

∂s
dy1 − y

∫ y

0

∂ω

∂s
dy1, (3.11a, b)
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subject to the boundary conditions

ω = 1 at s = −∞, (3.12)

ω = 1 at y = ∞, (3.13)

∂ω

∂y
= q

dp

ds
at y = 0, (3.14)

and the interaction law

p = −q
∫ ∞

0

∂ω

∂s
dy +

df

dx
. (3.15)

To construct the numerical solution of the interaction problem (3.10)–(3.15) the
following finite-difference technique has been used. We introduce a mesh

(yk, sj),

{
k = 1, . . . ,M,
j = 1, . . . , N,

and denote the values of ω at the node points (yk, sj) by ωk,j; considered together
they constitute the grid function {ωk,j}. As pressure p is independent of y, it may be
represented by the grid function {pj} whose elements are defined as pj = p(sj).

Choosing the left-hand-side boundary of the computational domain sufficiently far
upstream of the corner, we write boundary condition (3.12) in the form

Lk,1 = ωk,1 − 1 = 0, k = 1, . . . ,M. (3.16)

Here and in the following, Lk,j denote finite-difference operators acting upon the
grid functions {ωk,j} and {pj}. In particular, each operator in (3.16) is written as
Lk,1 = ωk,1 − 1. Setting Lk,1 to zero constitutes the corresponding finite-difference
equation, the number of which should coincide with the number of elements in {ωk,j}
and {pj}.

Boundary condition (3.13) may be represented using this notation as

LM,j = ωM,j − 1 = 0, j = 2, . . . , N. (3.17)

We shall now turn to equation (3.10). For the node points on the grid line next
to the upstream boundary the Crank–Nicolson approximation for ∂ω/∂s has been
adopted, leading to the following second-order-accurate finite-difference scheme for
(3.10) which is intended to be used for j = 2 and all k = 2, . . . ,M − 1:

Lk,j = 1
2
(uk,j + uk,j−1)

ωk,j − ωk,j−1

sj − sj−1

+ ṽk,j−1/2

λyωk,j + λyωk,j−1

2
− λyyωk,j + λyyωk,j−1

2q
= 0.

(3.18)

In order to reduce the number of unknowns and ensure that the operators Lk,j in
(3.18) act upon {ωk,j} only, we express uk,j and ṽk,j using (3.11):

uk,j =
1

2

[
ω1,j(y2 − y1) + ωk,j(yk − yk−1) +

k−1∑
l=2

ωl,j(yl+1 − yl−1)

]
, (3.19)

ṽk,j−1/2 =
1

2(sj−1 − sj)
[
(ω1,j − ω1,j−1)(yk − y1)(y2 − y1)

+

k−1∑
l=2

(ωl,j − ωl,j−1)(yk − yl)(yl+1 − yl−1)

]
. (3.20)
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The symbols λy and λyy in (3.18) stand for finite-difference operators which represent
the first- and second-order derivatives with respect to y. Applied to the vorticity they
are written as

λyωk,j =
−ξ2ωk−2β,j + ωk−β,j − (1− ξ2)ωk,j

(yk−2β − yk)(ξ − ξ2)
, (3.21)

λyyωk,j = 2
νωk−2β,j + δωk−β,j + ωk+β,j − (1 + δ + ν)ωk,j

(ν + δξ2 + γ2)(yk−2β − yk)2
. (3.22)

Here

β =

 sign ṽk,j−1/2 if k 6= 2,M − 1,
−1 if k = 2,
1 if k = M − 1,

and

γ =
yk+β − yk
yk−2β − yk , ξ =

yk−β − yk
yk−2β − yk , δ =

γ − γ3

ξ3 − ξ , ν =
γ3 − γξ2

ξ2 − 1
.

Substitution of expressions (3.19)–(3.22) into (3.18) allows us to calculate the values
of Lk,j for any distribution of {ωk,j} in the flow field. The scheme is stable provided
that the longitudinal velocity u is positive. This, of course, is valid for the upstream
boundary (j = 1) and for the grid line next to it (j = 2). However, further downstream
the longitudinal velocity component u changes its sign as the separation takes place.
It then might become positive again if secondary separation occurs inside the primary
separation region, which indeed was observed in our calculation for ramp angles
larger than α ' 4.6. The fragmentation of the flow separation is expected to continue
as the ramp angle α increases, and to handle these situations one needs to make
the scheme stable independently of the sign of u. This has been achieved in our
study by using in (3.10), instead of the Crank–Nicolson approximation, windward
finite-differencing for ∂ω/∂s given by

λsωk,j =
1

sj − sj−α
[
ωk,j−2α

µ(µ− 1)
− µ

µ− 1
ωk,j−α +

1 + µ

µ
ωk,j

]
, (3.23)

where

α = sign uk,j , µ =
sj − sj−2α

sj − sj−α .
With (3.23) equation (3.10) is represented by the scheme

Lk,j = uk,jλsωk,j + ṽk,jλyωk,j − q−1λyyωk,j = 0, (3.24)

which has been used in our calculations for j = 3, . . . , N and k = 2, . . . ,M − 1. The
longitudinal velocity uk,j in (3.24) is calculated with the help of (3.19), and we again
use formulae (3.21) and (3.22) for the derivatives of ω with respect to y except now
parameter β is decided based on the sign of ṽk,j , i.e.

β =

 sign ṽk,j if k 6= 2,M − 1,
−1 if k = 2,
1 if k = M − 1.

(3.25)

To calculate the lateral velocity component ṽk,j in (3.24) and (3.25) we use the
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following approximation of (3.11b):

ṽk,j =
1

2

[
−yk(y2 − y1)λsω1,j +

k−1∑
l=2

λsωl,j(yl − yk)(yl+1 − yl−1)

]
. (3.26)

Here, for λsω1,j and λsωk,j formula (3.23) is used with α = 1 which corresponds
to the upstream-difference representation of ∂ω/∂s. However, when the secondary
separation forms, for the node points inside the secondary separation region we use
in (3.26) the ‘central-difference’ approximation of ∂ω/∂s given by

λsωk,j =
1

sj − sj+1

[
ωk,j−1

µ(µ− 1)
− µ

µ− 1
ωk,j+1 +

1 + µ

µ
ωk,j

]
,

where

µ =
sj − sj−1

sj − sj+1

.

Boundary condition (3.14) on the ramp surface is treated similarly to the vorticity
equation (3.10). For j = 2 we use the Crank–Nicolson approximation

L1,j =
λ(β=−1)
y ω1,j + λ(β=−1)

y ω1,j−1

2
− 1

2

pj − pj−1

sj − sj−1

(qj + qj−1) = 0, (3.27)

where the operator λ(β=−1)
y is given by (3.21) with β = −1. For the rest of the grid

points on the lower boundary of the computational domain, i.e. for j = 3, . . . , N, we
use upstream differencing for dp/ds in (3.14) leading to

L1,j = λ(β=−1)
y ω1,j − λ(α=1)

s pjqj = 0. (3.28)

Here λ(α=1)
s is given by (3.23) with α = 1.

Turning next to the interaction law (3.15) one has to keep in mind that the
interaction leads to the upstream influence through the boundary layer even when
the flow is well-attached to the body surface. This means that finite differencing of
equation (3.15) should be in such a way that the solution in the computational domain
depends on the state of the flow at the downstream boundary. This is achieved by
using downstream differencing for ∂ω/∂s on the right-hand side of (3.15). As a result
we have the following set of operator equations:

LM+1,j = 1
2
(pj + pj+1)− qj+1 + qj

2

[
1

2

ωj+1,1 − ωj,1
sj+1 − sj (y2 − y1)

+

M−1∑
k=2

ωk,j+1 − ωk,j
sj+1 − sj (yk+1 − yk−1)

]
− df

dx

∣∣∣∣
s=sj+1/2

= 0 (3.29)

which have to be used for j = 1, . . . , N − 1.
Finally, the downstream boundary condition (2.9) gives

LM+1,N = pN − α = 0. (3.30)

This completes the formulation of the finite-difference equations. We shall now
represent them in a vector form. For this purpose we introduce a set of vector
operators Lj , each being composed of the scalar finite-difference operators Lk,j ,
k = 1, . . . ,M + 1 acting on the grid line s = sj . We also arrange the unknown
quantities into vectors Ωj by combining the elements of the vorticity grid function
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ωk,j on the jth grid line with pressure pj . We have

Lj =



L1,j

...
Lk,j

...
LM,j

LM+1,j


, Ωj =



ω1,j

...
ωk,j

...
ωM,j

pj


, j = 1, . . . , N.

To adjust the rescaling coefficient q = ds/dx to the solution of the problem, we
introduce a set of controlling parameters ci, i = 1, . . . , I or, equivalently, a vector

C =

 c1

...
cI

 .
Using this notation one can combine (3.16) with the first (j = 1) of (3.29) and write

them together in a more compact form

L1(Ω1, Ω2,C ) = 0. (3.31)

Similarly, combining the first (j = 2) of (3.17) with (3.18), boundary condition (3.27)
and the second (j = 2) of (3.29) results in

L2(Ω1, Ω2, Ω3,C ) = 0. (3.32)

The vector equations for the subsequent grid lines

Lj(Ωj−2, Ωj−1, Ωj , Ωj+1, Ωj+2,C ) = 0, j = 3, . . . , N − 2 (3.33)

are composed by combining (3.17) with (3.24), (3.28) and (3.29).
The dependence of Lj in (3.33) on Ωj+1 and Ωj+2 comes, first, from equation (3.24)

where the windward finite-difference operator (3.23) is used for representing derivative
∂ω/∂s in equation (3.10). For all the node points with negative uk,j this operator is
calculated using ωk,j+1 and ωk,j+2. However, downstream of the reattachment point
the longitudinal velocity u is positive except on the wall, which means that Lj does
not include ωk,j+1 and ωk,j+2. The solution, nevertheless, remains dependent on the
downstream flow behaviour due to the interaction law (3.29) which relates Ωj to Ωj+1.
Taking this into account we can write equation (3.33) for j = N − 1 as

LN−1(ΩN−3, ΩN−2, ΩN−1, ΩN,C ) = 0. (3.34)

On the last grid line (j = N) we use the downstream boundary condition (3.30) instead
of the interaction law (3.29), and therefore the corresponding operator equation is
written as

LN(ΩN−2, ΩN−1, ΩN,C ) = 0. (3.35)

To solve equations (3.31)–(3.35) Newton–Raphson linearization has been used.
With Ω̂j , Ĉ denoting an approximation to the solution given as an initial guess or
found from the previous iteration, an improved approximation

Ωj = Ω̂j + ∆Ωj, C = Ĉ + ∆C (3.36)

may be found by substituting (3.36) into (3.31)–(3.35) and making use of the Taylor
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expansions. This results in the following linear equation for the correction vectors
∆Ωj and ∆C :

∂L1

∂Ω1

∆Ω1 +
∂L1

∂Ω2

∆Ω2 +
∂L1

∂C
∆C = −L1, (3.37)

∂L2

∂Ω1

∆Ω1 +
∂L2

∂Ω2

∆Ω2 +
∂L2

∂Ω3

∆Ω3 +
∂L2

∂C
∆C = −L2, (3.38)

∂Lj

∂Ωj−2

∆Ωj−2 +
∂Lj

∂Ωj−1

∆Ωj−1 +
∂Lj

∂Ωj
∆Ωj +

∂Lj

∂Ωj+1

∆Ωj+1

+
∂Lj

∂Ωj+2

∆Ωj+2 +
∂Lj

∂C
∆C = −Lj , j = 3, . . . , N − 2, (3.39)

∂LN−1

∂ΩN−3

∆ΩN−3 +
∂LN−1

∂ΩN−2

∆ΩN−2 +
∂LN−1

∂ΩN−1

∆ΩN−1 +
∂LN−1

∂ΩN
∆ΩN +

∂LN−1

∂C
∆C = −LN−1,

(3.40)

∂LN
∂ΩN−2

∆ΩN−2 +
∂LN
∂ΩN−1

∆ΩN−1 +
∂LN
∂ΩN

∆ΩN +
∂LN
∂C

∆C = −LN. (3.41)

To solve these equations a generalization of the Thomas elimination technique was
employed, based on the recurrent use of the formula

∆Ωj = Rj∆Ωj+1 +Tj∆Ωj+2 +Zj∆C + S j , j = 1, . . . , N − 2. (3.42)

Here Rj and Tj are (M + 1)× (M + 1) matrices, Zj is an (M + 1)× I matrix and S j
an (M + 1)-component vector. For j = N − 1 and j = N formula (3.42) reduces to

∆ΩN−1 = RN−1∆ΩN +ZN−1∆C + SN−1,

∆ΩN =ZN∆C + SN.

}
(3.43)

Recursive formulae to calculate the Thomas coefficients Rj ,Tj , Zj and S j may be
deduced in the usual way by substituting (3.42) and (3.43) into equations (3.37)–(3.41).
With known Thomas coefficients formulae (3.42), (3.43) may be rewritten in the form

∆Ωj =Fj∆C + Gj , j = 1, . . . , N, (3.44)

where matrices Fj and vectors Gj are calculated recursively using

Fj = Zj +RjFj+1 +TjFj+2,
Gj = S j +RjGj+1 +TjGj+2,

}
j = 1, . . . , N − 2,

and from (3.43)

FN = ZN, FN−1 = RN−1FN +ZN−1,

GN = SN, GN−1 = RN−1GN + SN−1.

To determine the unknown vector C we need to formulate a set rules that should
be used to rescale the longitudinal coordinate. We shall suppose that these rules may
be expressed in the form of I scalar equations relating the controlling parameters
c1, . . . , cI with the sought vorticity and pressure grid functions {ωk,j}, {pj}. Equivalently
we can use one vector equation which we shall write as

Q(Ω1, . . . , Ωj , . . . , ΩN,C ) = 0. (3.45)

Here Q is an I-component vector operator.
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Figure 3. Skin friction distribution for α = 4.5; solid line – method A (mesh 351× 101);
dotted line – method B (mesh 1400× 71).

Equation (3.45) may be linearized in a usual way, leading to

N∑
j=1

∂Q

∂Ωj
∆Ωj +

∂Q

∂C
∆C +Q = 0. (3.46)

Combining (3.46) with (3.44) we obtain(
N∑
j=1

∂Q

∂Ωj
Fj +

∂Q

∂C

)
∆C +

N∑
j=1

∂Q

∂Ωj
Gj +Q = 0.

This equation should be solved for ∆C and then the correction vectors ∆Ωj may be
calculated by making use of formula (3.44). The solution is then updated using (3.36),
and the iterations are repeated until the convergence is reached.

The numerical procedure described above was applied to the compression ramp
flow calculations in the following way. We started with a relatively small value
of the compression ramp angle, namely α = 1.0, using the unperturbed flow field
ωk,j = 1, pj = 0 for initializing the unknown vectors Ωj . Angle α was then increased
progressively, and for each new α the converged solution corresponding to a smaller α
was used as an initial guess to start the iterations. Typically seven or eight iterations
were needed for convergence to be reached.

For angles up to α = 4.5 no automatic adjustment of the grid was found necessary,
and s was simply set to coincide with x. Most of the calculations were performed on
two grids, 701 × 101 and 351 × 151, both being non-uniform. In the y-direction the
grid step was chosen to grow with the distance from the wall according to a geometric
progression. Near the wall it was as small as y2−y1 = 0.1. At the same time the upper
boundary of the computational domain was moved out significantly further than in
previous studies of the flow. In our calculations it was normally placed at yM = 120.
In the longitudinal direction the grid points were concentrated in a region of large
gradients of the sought functions observed just upstream of the reattachment point.
The results of the calculations for α = 4.5 are shown in figure 3 in the form of the
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skin friction τ plotted against x; the skin friction is defined as

τ =
∂u

∂y

∣∣∣∣
y=0

.

We see that a region around x = 4.8 requires special attention. In this region there
were fifty uniformly spaced grid points with the step as small as sj+1−sj = 0.005. Both
upstream and downstream of this region the step size was increased monotonically
according to geometric progression. The entire computational domain covered a
region stretching from s1 = −30 to sN = 70.

Initial attempts to extend the calculations beyond α = 4.5 showed significant
deterioration of the convergence properties of the Newtonian iteration used in our
scheme. To enable the scheme to converge we had to decrease the increment of the
angle α to ∆α = 0.005. The situation was cured by introducing an adaptive grid as
follows. Based on the results of calculations for α = 4.5 two points were identified as
‘centres’ of large gradient regions. The first one is situated slightly upstream of the
separation point, and the other slightly upstream of the minimal skin friction point.
They are shown in figure 3 by the arrows. Denoting the s-coordinates of these points
by s1 and s2, and the corresponding values of index j by j1 and j2, we chose the
rescaling function to be

x =

 s+ c1Φ(s1) + c2 if s < s1,
s+ c1Φ(s) + c2 if s1 > s > s2,
s+ c2 if s > s2,

(3.47)

where

Φ(s) =

∫ s

s2

(t− s1)2(t− s2)2 dt.

The two controlling parameters c1 and c2 in (3.47) require vector equation (3.45) to
be composed of two scalar equations, written as

Q1 = ω1,j1 − τ1 = 0,

Q2 = ω1,j2 − τ2 = 0,

which means that for α > 4.5 points s = s1 and s = s2 were attributed to the same
values of the skin friction as given by the solution for α = 4.5.

After this modification the convergence of the iteration procedure was fully restored
and we could progress to larger values of α with increments ∆α = 0.1.

3.2. Method B

In the second method equations (2.2) are first written in terms of the stream function
ψ where u = ∂ψ/∂y, v = −∂ψ/∂x. This method makes use of finite differences in x
combined with Chebychev collocation in y. In the y-direction the domain 0 < y < y∞
is linearly mapped into −1 < z < 1 and at each x-station Chebychev collocation is
used to enforce the equations and boundary conditions. So, defining ψk,j = ψ(xj, y(zk)),
where zk = − cos(kπ/NB), (0 6 k 6 NB) are the collocation points, the derivative
values (∂rψ/∂yr)(xj, y(zk)) = Drψj,k are computed via

∂rψj

∂yr
= Drψj ,

where ψj = (ψj,0, ψj,1, . . . , ψj,NB
)T and D is the Chebychev differentiation matrix oper-

ator, see Canuto et al. (1988).
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In the x-direction a non-uniform grid is used with grid spacing hj = xj − xj−1 (1 6
j 6 MB). The x-derivatives occurring in (2.2) are approximated using second-order
finite differences as follows. First, in regions of unseparated flow, a three-point back-
ward difference approximation for the u∂u/∂x term is used. In regions of separated
flow regions either a three-point forward difference operator, or a combination of
forward and backward differences are used, dependent on the magnitude of |u|. Thus
in general this term is approximated as

∂ψ

∂y

∂2ψ

∂y∂x
(xj, y(zk)) = (Dψ)j,k[αj,k(Dψ)k,j−2 + βj,k(Dψ)k,j−1

+γj,k(Dψ)k,j + δj,k(Dψ)k,j+1 + σj,k(Dψ)k,j+2].

Here

αj,k(ej,k) =
ej,khj

(hj + hj−1)hj−1

, βj,k(ej,k) = −ej,k(hj + hj−1)

hjhj−1

,

γj,k(ej,k) =
ej,k(2hjhj−1 + h2

j−1)

hjhj−1(hj + hj−1)
− (1− ej,k)(2hj+1hj+2 + h2

j+2)

hj+1hj+2(hj+1 + hj+2)
,

δj,k(ej,k) =
(1− ej,k)(hj+1 + hj+2)

hj+2hj+1

, σj,k(ej,k) = − (1− ej,k)hj+1

(hj+2 + hj+1)hj+2

,

and ej,k is a switching function defined by

ej,k =

{
1 if Dψj,k > ε
0 if Dψj,k < −ε,

with ej,k varying linearly from 0 to 1 when −ε < Dψj,k < ε.
A number of different approaches were used for approximating the v∂u/∂y term.

For the cases when secondary separation was not present a three-point backward
second-order difference approximation was used. For the values of the angle when
secondary separation arose, a second-order central difference approximation was
used to approximate v in the regions of secondary separation, and a three-point
second-order backward difference was used elsewhere. Thus the term v∂u/∂y was
approximated by

∂ψ

∂x

∂2ψ

∂y2
(xj, y(zk)) = (D2ψ)j,k[ᾱj,k(ψ)k,j−2 + β̄j,k(ψ)k,j−1

+γ̄j,k(ψ)k,j + δ̄j,k(ψ)k,j+1 + σ̄j,k(ψ)k,j+2],

where

ᾱj,k = σ̄j,k = 0, β̄j,k = − hj+1

hj(hj + hj+1)

γ̄j,k =
hj+1 − hj
hjhj+1

, δ̄j,k =
hj

hj+1(hj+1 + hj)

 for jb 6 j 6 je,

and

ᾱj,k = αj,k(1), β̄j,k = βj,k(1)γ̄j,k = γj,k(1)

δ̄j,k = δj,k(1), σ̄j,k = σj,k(1)

}
for j < jb or j > je.

The values j = js and j = je, denote the x-locations of the start and end of the region
of secondary separation.

Next, introducing Āj = A(xj) − αf0(xj), the nonlinear system of equations arising
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from the discretization takes the form

(Dψ)j,k[αj,k(Dψ)k,j−2 + βj,k(Dψ)k,j−1 + γj,k(Dψ)k,j + δj,k(Dψ)k,j+1 + σj,k(Dψ)k,j+2]

−(D2ψ)j,k[ᾱj,k(ψ)k,j−2 + β̄j,k(ψ)k,j−1 + γ̄j,k(ψ)k,j + δ̄j,k(ψ)k,j+1 + σ̄j,k(ψ)k,j+2]

=
Āj−1

(hj + hj+1)
− Āj

hj+1

+
hjĀj+1

hj+1(hj + hj+1)
+ hj(D

3ψ)j,k. (3.48)

Equations (3.48) were enforced at the collocation points zk for 1 < k < NB − 1. The
boundary conditions

ψj,0 = 0, (Dψ)j,0 = 0, (Dψ)j,NB
= y∞ + A(xj), (D2ψ)j,NB

= 1,

were also used which, together with (3.48), give (NB + 2) equations for the (NB + 2)
unknowns ψj and Aj at each x-station for 1 < j 6 MB . For the first two locations
j = 0, 1 the undisturbed solution was used, and in all the computations the value of
x corresponding to j = MB was in the unseparated flow region.

The nonlinear system of equations was solved by first introducing a Newton–
Raphson linearization with ψj,k = ψ̂j,k + ∆ψj,k , Āj = Âj + ∆Āj , and solving a linear
system for the corrections ∆ψj,k , ∆Āj . The hatted quantities represent an approximate
solution. The form of (3.48) leads to a block pentadiagonal system for the corrections
which was solved using a direct method. Typically only a few Newton iterations were
required to obtain the complete solution. For the smaller ramp angles the solution
was obtained from an arbitrary initial guess, but for the larger angles a solution for
a smaller angle was used to start the computation.

The computations were carried out on uniform as well as non-uniform grids. The
non-uniform grid was constructed such that it was divided into three sub-grids in
the intervals (−x0,−x1), (−x1, x2), and (x2, x3). The values of x0 and x3 were taken
to be large; x1, x2 were chosen so as to encompass the separated flow region and in
the (−x1, x2) region the grid was uniform. For x < −x1 and x > x2, the grid was
constructed such that successive intervals were in a geometric progression. Also the
bulk of the streamwise points Mb were chosen to lie in (−x1, x2). For the uniform grid
computations (say between (−x0, x3)) the typical values used were x0 = 60, x3 = 60.
For the non-uniform grid computations, typically 1001 points were used with 801
points concentrated in the separated flow region.

Grid size checks were performed for various values of Mb, the number of streamwise
points, and Nb, the number of collocation points. It was found that 64 points were
sufficient to resolve the flow features in the y-direction for angles up to α = 5. The
lack of resolution in the wall-normal direction resulted in oscillations near the point
of secondary separation. The value of y∞ was varied and it was found that y∞ had
to be increased for increasing values of α, and for all of the results shown here the
value y∞ = 50 was used.

4. Calculation results
The computations of the compression ramp flow have been performed in this study

for a slightly smoothed body shape

f(x) =
α

2
(x+

√
x2 + r2),

which was used in the interaction law (2.8) instead of the sharp corner (2.2). This
modification does not produce any noticeable influence on the calculation results,
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Figure 4. Comparison of (a) the skin friction and (b) pressure distributions for the sharp and
rounded corners for the ramp angle α = 4.5. Calculations were performed by method B (mesh
1001× 48); solid line – sharp corner; dashed line – rounded corner.
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Figure 5. Calculations of (a) skin friction and (b) pressure distribution for α = 5;
solid line – method A (mesh 1001× 201); dotted line – method B (mesh 1400× 71).

while it makes the task of numerical modelling of the flow easier. In particular, it
avoids special treatment of the corner region where otherwise a concentration of the
mesh points would be needed. Figure 4 displays the distributions of the skin friction
and pressure along the body surface calculated by method B for the sharp corner
with α = 4.5 and for the corresponding smoothed body. As can be seen the results
are graphically indistiguishable. The agreement becomes even better for larger values
of α when the corner is deeply embedded in the region of slowly moving reversed
flow. In these and all subsequent calculations the smoothing parameter was taken to
be r = 0.5.

For ramp angles up to α = 4.5 the results produced by methods A and B are in
excellent agreement with each other (see figure 3). They also agree very well with
the previous calculations of Ruban (1978), Rizzetta, Burggraf & Jenson (1978) and
Smith & Khorrami (1991). However, for larger α important new features in the flow
development have been observed, as may be seen using, for example, the results for
α = 5 shown in figure 5. Far upstream of the corner point the flow is unperturbed.
The skin friction τ = 1, as is required by the boundary condition (3.3), and the
pressure p = 0. Then the pressure starts to rise causing flow deceleration in the
boundary layer. The skin friction decreases, crossing zero at the separation point. It
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Figure 6. (a) Skin friction and (b) pressure distributions along the body surface for α = 7.5.
Calculations were performed with method A (mesh 1001× 201).

then reaches a minimum and starts to rise slowly. While it remains negative, the fluid
near the wall is moving in the opposite direction to the rest of the flow. The motion
in the reverse flow region is slow. For this reason the pressure develops a ‘plateau’
which is clearly seen in figure 5(b). The ramp angle α = 5 is large enough for the
secondary separation to be observed inside the primary separation region, manifested
by a small region of positive skin friction (figure 5a) and a characteristic drop of
the pressure (figure 5b). Slightly further downstream a sharp second minimum in the
skin friction is observed. It is accompanied by a sharp rise in the pressure over the
reattachment region. Further downstream the skin friction returns to its unperturbed
value τ = 1 and the pressure tends to p = α which corresponds to the inviscid flow
past the ramp.

For α greater than 5.3, method B started to develop oscillations in the secondary
separation region, and we had to rely mainly on method A. The behaviour of the
solution for α = 7.5 is demonstrated in figures 6 and 7. As may be seen from
comparing figure 6 with figure 5, near the primary separation point the flow remains
unaffected by an increase of α. All the fluid dynamic functions including the skin
friction τ and pressure p follow universal laws here as predicted by Neiland (1969)
and Stew & Williams (1969) in their early studies of self-induced separation of the
boundary layer on a flat surface. The increase of α merely results in a displacement
of the separation point further upstream from the corner O.

As can be seen from figure 6(b) a second ‘plateau’ region has been formed in
the pressure distribution for α = 7.5. This is due to the secondary separation which
extends from x = −29.2 to x = 16.1, occupying a significant part of the primary
separation region (see figure 7). The reattachment of the secondary separation near
x = −29.2 causes the pressure to rise from one ‘plateau’ level to another. It is also
interesting to observe the formation of the third separation in the streamline pattern
for α = 7.5. The fourth small separation is forming near x = 15.7 resulting in the
inflection of the streamlines clearly visible in figure 7. Fragmentation of the separation
region is expected to continue as α becomes larger.

The accuracy of calculation results has been ensured through various tests which
involved different mesh sizes and computational domains. An example of such cal-
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Figure 8. Skin friction distribution for α = 7.5; solid line was calculated with a mesh 1001× 201,
dashed line with 701× 131.

culations is presented in figure 8. It shows that thanks to careful adjustment of mesh
density, method A produces reliable results on the mesh 1001 × 201 for the ramp
angle α = 7.5. It is also interesting to note that our numerical results prove to be in
exceptionally good agreement with the asymptotic formulae

τ = 1− 0.51204αx−2/3 + · · ·
p = α− 0.31763αx−4/3 + · · ·

}
as x→∞ (4.1)

deduced by Gittler & Kluwick (1989) for downstream behaviour of the skin friction
and pressure (see figure 9). In particular, for the ramp angle α = 7.5 the numerical
solution follows very closely the asymptotic predictions (4.1) for all x > 25.
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Let us now return to figures 5(a) and 6(a). We can clearly see that increasing α
results in a rapid sharpening of the second minimum in the skin friction τ prior to the
reattachment. This trend was analysed earlier by Smith & Khorrami (1991). Based on
their calculations which (as we will see) over-predicted the growth rate of |τmin|, they
argued that a singularity develops in the solution at a finite value the compression
ramp angle, say α = α∗, leading to a breakdown of the solution. The singularity was
believed to be manifested by unlimited growth of |τmin| as α→ α∗ −0, and if this were
true, it would suggest that the solution does not exist for α > α∗.

However, our calculations do not support this conclusion. First, we found that
the solution remains smooth for all values of α and in our computations there was
sufficient resolution to describe the flow behaviour properly despite it becoming more
and more complicated as α increases. This is demonstrated by figure 10 which shows
enlarged distributions of the skin friction and pressure in a small vicinity of the
second minimum for α = 7.5. Both functions are perfectly smooth, and the circles on
the pressure curve show that the method used gives a good resolution of the flow
field.

Secondly, the solution follows Neiland’s (1970) reattachment theory rather well.
Readjusting his arguments for the compression ramp flow (see the Appendix) it may
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be shown, in particular, that the longitudinal extent of the separation region ` grows
at large values of α as

` ∼ α3/2 as α→∞, (4.2)

while the minimal skin friction

|τmin| ∼ α as α→∞. (4.3)

Figure 11 reveals that these formulae are in a good agreement with our numerical
solution.

To study the effect of the outer boundary we performed calculations with different
yM . The results are displayed in figure 12. They clearly show that restricting the outer
boundary to, say, yM = 15 results in significant ‘overshooting’ in the minimal skin
friction. In order to ensure the independence of the numerical results from the size of
the computational domain we typically used yM = 120.

5. Concluding remarks
Both numerical methods developed for this study are based on Newton linearization

followed by a direct solution of the resulting linear algebraic equations. With this
approach the problem of convergence of iterations which was the major concern
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in previous studies does not arise or, to be more precise, is not as acute as with
other methods. We found it very advantageous to have two independent methods
applied to the same problem. These were used for comparison purposes and for
identifying irregularities developing in the solution at large α. In particular, we found
that the computational domain used by previous authors was not sufficient to resolve
the problem. For example, in Ruban’s (1978) calculations the upper boundary of
the computational domain was placed at yM = 20, and Smith & Khorrami (1991)
restricted themselves to an even lower value of yM = 10. The present calculations show
that no reliable results can be obtained under these conditions for the compression
ramp angle larger than α = 4.

We further found that an adaptive grid should be used at large values of α when
sharp gradients of the sought functions develop in the flow field near the reattachment,
the reason being not so much the accuracy of the computational results but rather
the convergence of the iteration process. In this respect method A proved to be more
flexible than method B. With method B it was difficult to adaptively place points in
regions of large gradients. This resulted in the numerical instability encountered with
this method at large values of α.

Regarding the flow behaviour we found that with increasing α a rapid fragmentation
of the separation region takes place with additional eddies forming one inside another.
Our calculations did not confirm the finite ramp angle singularity concept put forward
by Smith & Khorrami (1991). The solution does show a sharpening of minimal skin
friction prior to reattachment, but this behaviour proved to be well in line with
Neiland’s (1970) reattachment theory, which does not involve any restrictions on the
ramp angle. In fact, it was intended by Neiland for finite values of θ (see figure 1),
i.e. α� 1.

This observation allows us to give the following conclusion to the discussion of
the studies of ‘moderate-scale’ separations given in the Introduction. In our view, the
reason why numerous attempts to develop a rational asymptotic theory of moderate-
scale separations were not successful does not lie with the finite ramp angle singularity
but is a result of oversimplification of the flow. All the theoretical models suggested
so far were based on the assumption of single eddy separation which, as we can see,
does not represent the real form of the flow.

We gratefully acknowledge the referees for helpful comments and support of the
paper. The work presented in this paper was supported by EPSRC through grant
GR/L62580/01.

Appendix. Analysis of the reattachment process
Here the processes taking place near the reattachment point will be discussed

following Neiland’s (1970) original work. His analysis was devoted to the reattachment
of a shear layer which terminates a large-scale separation; correspondingly certain
assumptions had been made on the velocity profile across the shear layer as it
approaches the wall. Whilst we are dealing here with separation regions that are
relatively small, Neiland’s description of the process may be easily adjusted for our
purposes, as the flow at hand already shows all the essential features of a developed
separation. With α becoming large, three major regions are clearly distinguishable in
the flow field: the separation region, the main body of the recirculating flow and the
reattachment region. We shall start with the separation region. As was mentioned
in § 5, the flow behaviour near the separation point S remains independent of the
processes taking place downstream. In particular, if we consider the streamline which
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Figure 13. A sketch of the ‘global’ flow structure.

leaves the body surface at the separation point S , then the angle made by this
streamline with the wall assumes a universal value ϑs t 1.6 as soon as the pressure
‘plateau’ is reached.

Following this streamline further downstream we see that it should reconnect to the
body surface at the reattachment point R for mass conservation to be observed in the
recirculation flow region (see figure 13). To predict the shape of this streamline, we
can rely on the Ackeret formula p = ϑ which shows that the streamline slope angle
ϑ remains unchanged as long as the pressure stays constant over the recirculating
region. This means that the reattachment angle βr may be evaluated as

βr = α− ϑs.
With α assumed large, this formula may be approximated by

βr ∼ α. (A 1)

Note that the assumption of constant pressure in the recirculation region may be
relaxed when deriving formula (A 1). Indeed, the variations of pressure from one
‘plateau’ level to another are small even compared to ϑs which has been neglected in
(A 1).

Before turning to the reattachment process we need to consider the shear layer
developing along the streamline in question which separates the recirculating region
from the rest of the flow. Since the fluid in this layer is driven by the constant
shear (3.4), the flow is governed by the Neiland’s (1971a) self-similar solution (see
also Sychev et al. 1998). According to this solution the characteristic thickness of the
shear layer grows as the cubic root of the distance from the separation point. Thus
prior to the reattachment it is given by

∆y ∼ `1/3 (A 2)

where ` is the distance between the separation and reattachment points. The velocity
in the shear layer grows monotonically from the recirculating region towards the outer
edge of the layer as shown in figure 14, and its value on the separation streamline
may be estimated as

u0 ∼ `1/3. (A 3)

Neiland’s (1970) reattachment theory is based on the following concept. As the
shear layer impinges on the wall, the inviscid supersonic flow outside the boundary
has to turn through angle βr to become parallel to the wall downstream of the
reattachment point R. This causes the pressure to rise by the value

∆p = βr,

and as α increases the pressure gradient induced in the reattachment region starts to
dominate the viscous forces. This suggests that the flow in the reattachment region
may be treated as inviscid everywhere except, of course, in a thin layer immediately
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R

Figure 14. The reattachment region.

adjacent to the wall. Taking into account that in any inviscid flow Bernoulli’s equation
holds, we can write

1
2
u2 + p = 1

2
[u0(ψ)]2 + p0. (A 4)

Here p0 is the undisturbed pressure in the recirculation region; the argument ψ in the
initial velocity profile u0(ψ) serves as a reminder that Bernoulli’s equation should be
applied to a particular streamline, all of them taking their origin in the shear layer
approaching the reattachment region as shown in figure 14.

It follows from (A 4) that the streamlines may be subdivided into two categories.
In the first one are the streamlines with initial u0(ψ) smaller than some critical
value. The fluid particles which travel along these streamlines do not have sufficient
kinetic energy to overcome the pressure rise in the reattachment region. If Bernoulli’s
equation were applied to a streamline from this category assuming p = p0 +βr , then u2

would become negative. This means that these fluid particles could overcome only a
partial pressure rise in the reattachment region; they cannot pass further downstream
but are forced to turn back into the recirculation region.

In the second category are the streamlines with large enough u0(ψ). After passing
through the reattachment region they form the boundary layer that originates from
the reattachment point and develops along the wall further downstream. The dividing
streamline may be identified by applying the condition that u on the left-hand side of
equation (A 4) should become zero at the end of the compression process when the
streamline comes in contact with the wall. Using this condition we find

1
2
u2

0 = p− p0 = βr. (A 5)

For the mass conservation law to hold in the recirculation region the dividing
streamline should be the separation streamline. This means that we can use u0 as
given by (A 3) in formula (A 5). Taking into account that according to (A 1)

∆p = p− p0 ∼ α (A 6)

we find that the extent of the separation region should grow with α as

` ∼ α3/2. (A 7)

Formula (A 7) was first deduced by Burggraf (1975) and figure 11(a) reveals an
excellent agreement of this formula with our calculation results.

To perform a similar comparison for the minimal skin friction we need to consider
a thin viscous sublayer forming near the wall in the reattachment region; it is shown
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in figure 14 by the dashed line. The longitudinal extent ∆x of the reattachment region
may be estimated with the help of the continuity equation (2.4). Comparing the two
terms in this equation, we can write

∂u

∂x
∼ ∂v

∂y
⇒ u

∆x
∼ v

∆y
.

In the main inviscid part of the reattachment region ∆y is defined by (A 2) and the
ratio of the velocity components is given by the reattachment angle, i.e. v/u ∼ βr .
Hence

∆x ∼ α−1/2. (A 8)

This estimate is valid for both the inviscid part of the reattachment region and the
viscous sublayer. To find the thickness δy of the viscous sublayer we turn to the
momentum equation (2.3). In the viscous sublayer, by its nature, the viscous term in
this equation should be comparable with the pressure gradient

∂2u

∂y2
∼ dp

dx
⇒ u

(δy)2
∼ ∆p

∆x
. (A 9)

Here u is the characteristic flow velocity in the sublayer. In order of magnitude it
coincides with the velocity in the inviscid part of the reattachment region. The latter
is given by (A 3). Combining (A 3) with (A 7) we have

u ∼ α1/2. (A 10)

Now we can solve (A 9) for δy using (A 6) and (A 8). We find

δy ∼ α−1/2. (A 11)

Using (A 10) and (A 11) it is easy now to evaluate the skin friction

τ =
∂u

∂y
∼ u

δy
∼ α,

which shows that |τmin| should grow with α as

|τmin| ∼ α.
Figure 11(b) shows that our calculation results are in a good agreement with this
prediction.
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